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This paper proposes a dynamic discrete choice framework to analyze the reallocation of
workers from the fossil fuel “dirty” sector to the renewable energy “clean” sector. In the
baseline model I focus on workers’ decision-making processes and take the energy sector
transition as an exogenous force. Workers’ transition from the dirty to the clean sector lags
the energy sector transition but occurs much more rapidly once it begins. High-skill workers
are first to transition due to higher earnings potential in the clean sector while low-skill
workers wait until the likelihood of losing their jobs in the dirty sector is too high to ignore.
I then propose next steps for including human capital accumulation and erosion as well as
multidimensional skill. T estimate the baseline model using the U.S. Energy and Employment
Report, a detailed survey of 30,000 energy sector employers. Finally, I characterize the
relationship between worker transition and energy sector transition for a variety of policy
scenarios, including one that meets the current US goal of 100% clean power by 2035.

*I initially conceptualized the idea for this project in ECON 630 and benefited from the guidance of Costas
Meghir. In addition, the baseline model presented here was developed in ECON 417/561 in collaboration
with James Han and with the assistance of Tony Smith.



1 Introduction

Despite the salience of the “environment vs. jobs debate” in political discussions, the labor
market outcomes associated with the transition to clean energy are not well documented
or understood. A robust literature uses reduced-form empirical methods to evaluate the
employment effect of existing environmental regulations (Berman and Bui, 1998; Greenstone,
2002; Walker, 2011), but treats unregulated yet similar firms in different regions as a control
group. Estimates of job losses in the treatment group are therefore biased upward assuming
these regulations cause a shift to firms in the unregulated regions (Hafstead and Williams,
2020). A small but growing literature uses computable general equilibrium (CGE) models to
overcome this issue but the vast majority assume full employment. A recent set of papers
have introduced search frictions (Hafstead and Williams, 2018; Hafstead et al., 2022; Aubert
and Chiroleu-Assouline, 2019) and search frictions with worker heterogeneity (Intriago, 2021).
However, both the reduced-form and structural literatures examine the effect of a particular
environmental policy such as a carbon tax or clean electricity standard. This project, on the
other hand, seeks to evaluate the labor market impact of the energy transition as a whole.
While a related strand of literature has also focused on modeling the overall transition to
clean energy (Acemoglu et al., 2012, 2016), these papers focus on technology and innovation
rather than labor market outcomes.

The transition to clean energy will be among the most important labor market shifts of the
21st century. What will be the ratio between jobs losses in the fossil fuel industry and gains
in the renewable energy industry? To what extent will reallocation offset job losses? How
will workers of different skill levels be affected? Will workers transition to clean energy jobs
quickly enough to meet mitigation targets? This project attempts to address these questions
by building on the recent search-CGE models of Hafstead and Williams (2018) and Intriago
(2021) but diverging from them to specify a relationship between the search-and-matching
process and the energy transition writ-large.

In this proposal, I estimate a simple discrete choice model to represent workers’ decisions



to transition to the clean sector. Job destruction probabilities in the dirty sector are equivalent
to clean energy market share. The probability of losing one’s job in the dirty sector is exactly
equal to the probability of being offered a job in the clean sector. Importantly, clean energy
market share, or state of the energy transition at a given time, is modeled exogenously. The
baseline model captures the key idea that worker transition will lag behind sector transition;
however, it clearly fails to account for several important dynamics. I propose a framework to
account for human capital accumulation as well as the distinct skill requirements of dirty and
clean sector jobs.

I calibrate the baseline model using data from the US Energy and Employment Report,
which provides far more granular data on energy industry employment than BLS or Census
data. I focus exclusively on the energy production, transmission, and distribution industries
because energy is the same good irrespective of dirty or clean production. Future work,
however, should consider spillovers to related industries (e.g., durable good manufacturing).

The rest of this proposal is organized as follows. Section 2 presents the baseline model and
proposed next steps. Section 4 discusses data and calibration. Section 5 presents preliminary

results and policy simulations. Section 6 briefly concludes.

2 Baseline model

Time is discrete, infinite, and indexed by ¢ > 0. There are two sectors s € {0, 1} of the
energy industry where 0 represents the dirty sector and 1 represents the clean sector. A grid
of heterogeneous and risk-neutral workers i seek employment in many homogeneous firms,
though I do not explicitly model the firm side to keep the baseline model relatively simple.
Workers’ utility is a function of log wages. Workers discount future payoffs at a common rate
p.

I focus exclusively on the reallocation of workers between the dirty and clean sectors.

Worker’s internalize the likelihood and payoffs of unemployment in their decision-making



process but never become unemployed. Each worker has human capital n; which is sampled
from a distribution that varies between sectors.

The model is driven by a sector evolution variable # which represents the share of firms in
the clean sector. Workers receive job offers and lose their jobs as a function of the share of
firms in each sector. Employed workers” wages w; depend on their human capital and vary
by sector. Within each sector, higher skilled workers receive monotonically higher wages than
lower skilled workers. Unemployed workers receive a benefit calculated as a fraction B of the

mean wage conditional on human capital.

2.1 Energy sector evolution

In the main specification the clean energy market share 6; evolves as a logistic function in
order to match the S-curve shape of the transition from dirty to clean energy. I model 8;
as an exogenous force in order to simplify the model. However, this creates a puzzle as to
how and why the sector transition begins at all if no labor is involved. Further, the model
predicts that workers transition when the clean sector has sufficiently large enough market
share, leading to a period of sector transition with no labor transition. The model therefore
best reflects the subset of workers in the industry who observe the energy transition and
decide whether to switch instead of the universe of workers in the energy industry.

Formally, 6, evolves following the standard logistic model

K

0 = T o Fn (1)

where K reflects the market share of clean energy at the end of the transition; k reflects the

curvature of the evolution path; and b reflects the point at which the transition begins.



2.2 Workers

The key contribution of the modeling framework is to specify a relationship between
energy sector transition and the associated labor transition rather than simply evaluating the
effect of a particular environmental policy. The model must therefore specify a relationship
between clean energy market share 6, and job arrival and destruction probabilities. In this
simple model, I express job destruction as a function of 8; and 1 — #;. The probability of
losing one’s job in the dirty sector is #; while the probability of losing one’s job in the clean

sector is 1 — 6;:

As 6 approaches K, it becomes increasingly likely to lose a job in the dirty sector and receive
a job offer in the clean sector, and vice versa.
Wages are a function of human capital, where human capital n for a given worker ¢ is

sampled from a log-Normal distribution. Wages are expressed as

w} =C(n})  wi =C'(n;) (3)

where C/C? reflects the ratio between mean wages in the dirty and clean sectors. Human

capital distribution for each sector is expressed as

n ~InN(©0,0%) i ~InN(0,0") (4)

such that both distributions are normalized to 1 but have distinct variance. To my knowledge,
this set up would be the first to include a full distribution of worker skill rather than
discretizing workers as high- or low-skill as in Intriago (2021).

In each period a given worker maximizes lifetime-discounted utility based on their choice

of sector in the next period s’. This dynamic discrete choice problem can be written as a



Bellman equation where the state of the worker is given by her current sector s:
Vi t(81) = . flelﬁ)xl}[(l —s¢) (1 = TD)u(w)) + 117 (u(By)))
+ 50 (1= T)u(w;) + I (u(By)))

+ B (vip (sv))]. ()

In the current period a given worker can either keep her job with probability (1 — II7) and
receive the associated wage or become unemployed with probability I} and earn unemployment

benefits.

2.3 Steady state analysis

Since 6, asymptotes at K, I derive analytical solutions for the job destruction and job
creation probabilities as well as the value function on the infinite horizon. This enables me to
work backwards to recursively solve the value function in every period. I define I1° and II! as

the job destruction probabilities in the dirty and clean sectors in the steady state:

Solving for the value function at the end of the clean energy transition yields:

vi(s) = (1 =) (1 = T)u(wy) + I (u(By)) + s (1 = I)u(w;) + I (u(By))) + Boi(s)

—

(=) (1= Eu(w?) + TO((B) + s (1 — u(ul) + T (u(By)
vi(s) = 15 - (7

I then calculate the period at which |6, — K| < € and induct backwards from that period,

treating all state variables after this period as having their asymptotic values.



3 Model next steps

This section presents three extensions of the baseline model, each of which builds on the

previous one.

3.1 Temporary skill penalty

In the baseline model, workers remain at the same rank of the wage distribution when
switching sectors (e.g., the 100th best worker in the dirty sector earns the wage of the 100th
best worker in clean sector when they switch). This captures the idea that many workers in
dirty energy industries have experience pertinent to clean industries. For example, some oil
and gas workers have skills necessary for offshore wind, carbon capture utilization and storage,
and low-carbon gas production and transport. Coal miners have skills needed to mine critical
minerals such as lithium, copper and cobalt, which are expected to see a seven-fold growth in
demand by 2050 under the International Energy Agency’s net zero scenario (International
Energy Agency, 2021).

Though this modeling decision is more realistic than assuming all workers enter the clean
sector as low-skilled, it fails to capture the temporary skill penalty workers may face when
transitioning sectors. In order to include this feature I modify the wage equation to evolve as

a function of time and human capital:

Co(n)p it (t — tswiten) < P
wi = (8)

C*(n?) otherwise

where p is a skill penalty parameter moving workers down in rank in the skill distribution

during the temporary period P immediately following a worker’s transition.



3.2 Human capital accumulation

The addition of a temporary skill penalty is the simplest way to account for human
capital erosion. Fully accounting for human capital accumulation and erosion would require

modifying the value function to include the probability ¢® a worker increases in skill rank.
Vig(se) = max [(1=s) (1 = T7)¢"u(wp) + (1 = IE)(1 = ¢*)u(wy) + 1T (u(By)))
+ 50 (1= T u(wy) + (1= T})(1 = ¢ Ju(w;) + I} (u(B;)))

+ 6 (vir e (sr))]- (9)

In each period, a given worker can now either keep her job with probability (1 — II?) and
increase in skill rank with probability ¢° to earn higher wages, keep her job and stay at
the same skill rank and wage level, or become unemployed with probability II{ and earn

unemployment benefits.

3.3 Multidimensional skill

The baseline model sees skill as one-dimensional: workers have more or less of one “skill”
which firms reward through higher wages. This representation is at odds with recent work
demonstrating that cognitive, manual, and interpersonal skills are very different productive
attributes (Lise and Postel-Vinay, 2020). Including multidimensional skill is particularly
important in a model of sectoral transition with human capital accumulation: manual skills
adjust quickly (they are easily accumulated on the job and relatively easily lost when unused)
while cognitive skills are much slower to adjust. Interpersonal skills are essentially fixed over
a worker’s lifetime.

Further, though the skill requirements for some clean and dirty jobs overlap, critical
differences in skill requirements emerge when considering multidimensional skill (Greenspon

and Raimi, 2022). For example, as discussed above, the manual skill requirements for coal



miners and critical mineral miners are quite similar. Yet cognitive and interpersonal skill
requirements are more likely to vary. Vona et al. (2018) finds two core sets of skill requirements
that differ between clean and dirty jobs: engineering skills for design and production of tech-
nology as well as managerial skills for setting up and monitoring environmental organization
practices.

A simple accounting for multidimensional skill keeps the baseline structure in which skill
is sampled from a log-Normal distribution, but models 7 as a skill bundle n = (n¢, nar, 1)
capturing workers’ cognitive skills 7o, manual skills 7,,, and interpersonal skills n; (I drop
the ¢ subscripts for simplicity). Though there are of course more granular skill delineations, I
follow Lise and Postel-Vinay (2020) for simplicity of exposition and empirical estimation. In

both sectors, worker skill n° is represented as:

ne InN (0, 0f)
= 1ny | ~ | nN(©,03,) (10)
ny InN (0, 07)

I also follow Lise and Postel-Vinay (2020) and assume a linear adjustment for all skills as a
function of job tenure such that the value function remains unchanged from equation 9 with

the exception that ¢° is now composed of ¢¢, ¢3,, @5.

4 Quantitative Strategy

4.1 Baseline data

I use data from the 2019 Wage Supplement to the U.S. Energy and Employment Report
(USEER) to calibrate the baseline model.! The U.S. Energy and Employment Report is based
on a 15-minute supplemental survey of approximately 30,000 employers that complements

the employment data in the Quarterly Census on Employment and Wages (QCEW) from the

T use 2019 data to avoid capturing the unique labor market dynamics of the COVID-19 period.

8



Bureau of Labor Statistics (BLS). BLS categorizes employment and wage statistics across
1,057 industry subsectors according to each firm’s primary business focus under the North
American Industrial Classification System (NAICS). The USEER was created to gather more
granular data on the employers in five sectors: fuels; electric power generation; transmission,
distribution, and storage; energy efficiency; and motor vehicles. Employment in each of these
five sectors is spread across 186 NAICS subsectors. Some of these subsectors are 100 percent
energy-related, while others are only partially composed of energy employment. Further,
employees may spend a varying fraction of their time on energy-related tasks in each subsector.
The USEER data accounts for these factors, which may be overlooked if using the QCEW.

Table 1 shows summary statistics on wages and employment across energy subsectors
based on fuel type. For example, natural gas jobs span electric power generation, fuels,
transmission, and distribution. The average median hourly wage is $28.19 across clean sectors
and $28.54 across dirty sectors. Percent total energy employment does not add to 100 because

I exclude subsectors that do not directly represent a clean or dirty fuel.

Table 1: Energy industry wages and employment, 2019

Sector Industry Median Hourly Wage ($) Percent National Median Wage Total Employment Percent Total Energy Employment
Clean  Nuclear 39.19 104.8 70,323 0.8
Dirty  Natural Gas 30.33 58.5 636,043 7.6
Dirty  Coal 28.69 49.9 185,689 2.2
Clean Hydropower 26.97 40.9 67,772 0.8
Dirty  Oil 26.59 38.9 839,831 10.0
Clean  Wind 25.95 35.6 114,774 1.4
Clean  Solar 24.48 27.9 345,393 4.1
Clean  Storage (excl. fossil fuels) 24.36 27.3 80,550 1.0

Source: U.S. Energy and Employment Report, Bureau of Labor Statistics

4.2 Proposed data

In order to expand the baseline model to include human capital accumulation and
multidimensional skill, I link data from the Occupational Informational Network (O*NET)
and the Panel Study of Income Dynamics (PSID) to the USEER data through the NAICS
codes system. Estimates of the occupation shares in each industry come from the BLS.

The PSID is well known and requires little explanation. I use it to capture heterogeneity



among workers and to identify the parameters that differ across high- and low-skilled workers
in each sector. I use the O*NET data to capture multidimensional skill. These data describe
over 970 occupations in terms of skill and knowledge requirements, work practices, and work
settings. Following Lise and Postel-Vinay (2020), I run Principal Component Analysis (PCA)
on a large set of O*NET measures to create the cognitive, manual, and interpersonal skill

requirement indices for jobs in each sector.

4.3 Calibration

Table 2 summarizes the baseline calibration parameters. I use a monthly discount factor
(8) of 0.996 to correspond to the average annualized interest rate of 4%. The ratio of the
average median hourly wage in the dirty and clean sector (C°/C") is 1.01 based on the USEER
data. I follow Intriago (2021) and Hafstead and Williams (2020) and set the unemployment
benefit replacement rate as 0.2. I calibrate human capital distribution to loosely match the

USEER wage data.

Table 2: Parameter values

Definition Parameter Value
Discount factor 15} .996
Relative wage difference ct/c? 1.01
Replacement rate B 0.2
Standard deviation skill distribution clean o? 0.8
Standard deviation skill distribution dirty ol 0.4

Energy transition speed parameter 0.055

Energy transition asymptote K 1
k
Energy transition timing parameter b -5

Figure 1 shows the human capital distribution for the dirty and clean sectors. Workers in
the dirty sector have higher wages on average than workers in the clean sector. That said,
workers in the clean sector are the highest earners, with workers in the nuclear industry
earning 104.8% of the national median wage. Finally, I project 6; since it is not possible to

calibrate to any data. In the main specification, clean energy share begins at 0 in order to
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show the full stylized S-curve transition from dirty to clean.

Figure 1: Worker skill distribution
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Notes: Figure shows calibrated skill distribution in the clean and dirty sectors.

Extending the baseline model to account for a temporary skill penalty, human capital
accumulation, and multidimensional skill would require the estimation of the additional
parameters {p, P, 0, 05,05, &%, ¢35, 05} While 0§, 05, 0§ can be inferred directly from the
O*NET data, the remaining parameters would require estimation using the general method

of moments.

5 Preliminary results

Figure 2 simulates the sector transitions of 1,000 workers who each begin in the dirty
sector and eventually all transition to the clean sector. Overall, worker sectoral transition
lags energy sector transition but occurs much more rapidly than energy sector transition once
it begins. Workers transition based on two forces: (1) increasing job destruction probability
in the dirty sector and job arrival probability in the clean sector and (2) for high skilled
workers, higher earnings potential in the clean sector. No workers transitions back from the

clean to dirty sectors because 6; is monotonically increasing, though the model allows for
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switching back and forth.

The curvature of the worker transition pathway comes from the distribution of worker
skill. The right panel of Figure 2 shows this result in more detail: high-skilled workers switch
earlier than low-skill workers. I sort workers by human capital such that “worker 1”7 has the
lowest skill and “worker 1000” has the highest skill. Since workers remain at the same rank of
the wage distribution, high-skill workers in the dirty sector move to the long right tail of the
clean sector wage distribution. This encourages high-skill workers to switch earlier and risk a
greater chance of unemployment for greater wages. The lowest skilled workers are last to
switch since their wages decrease when switching to the clean sector.

Figure 2: Worker transition lags energy sector transition
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Notes: The left panel compares the worker transition to the sectoral energy transition. The right panel shows a
histogram of the period in which workers transition. “Low-skilled” workers are workers 0-500 while “high-skilled”
workers are workers 501-1000.

I now apply the model to evaluate the labor transition under current market conditions
and potential policy scenarios. Figure 3 shows four scenarios, each of which increases in
stringency: limited climate policy, moderate climate policy, aggressive climate policy, and
100% clean energy by 2035. While b is initially calibrated such that at time ¢ = 0 the clean
energy share (6p) is approximately 0, b is now calibrated such that 6, matches the current
clean energy market share of 0.2. This eliminates the full S-shape of the sector transition
curve. In addition, I label sector transition as “complete” when clean energy market share is
more than 0.95, much before the final asymptotic value.

As in the full S-curve simulation, in each policy scenarios labor transition lags sector

12



transition but is completed must faster than sector transition. Even in the most limited
climate policy scenario, the vast majority of workers transition to the clean sector by 2030.
This naturally begs the question: who continues working in the dirty sector in the final
years before the transition is complete? The finding that the majority of these workers are
low-skilled is consistent with that of Intriago (2021), who finds a reallocation from high-skill

to low-skill work in both sectors following the imposition of a carbon tax.

Figure 3: Worker transition varies with energy sector transition
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Notes: Figure shows potential pathways for the evolution of the energy sector mix. The upper left panel shows less
aggressive climate policy than the main specification. The upper right panel corresponds to the same transition speed
as the main specification but shifted to reflect the current clean energy share at 0.2. The lower left panel shows more
aggressive climate policy than the main specification. The lower right shows most aggressive climate policy, aligned
with what is needed to meet the Biden administration’s goal of 100% clean energy by 2035.
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6 Concluding remarks

This project aims to provide the first theoretical framework for evaluating workers’ decision-
making processes in the energy transition. That said, the focus on the worker’s side limits
the scope of analysis. I hope to eventually embed the model of the worker’s problem in
a general equilibrium framework. Doing so would enable me to capture several important
missing forces in the model such as firm optimization, wage bargaining, and search frictions.

A general equilibrium framework would also enable industry size to grow or shrink over
time to allow for net job creation as well as reallocation. Incorporating sector growth could
for endogenous sector transition even if individual workers don’t internalize their impact
on sector transition. Indeed, perhaps the most uncertain element of the current modeling
framework is the shape of the energy sector transition itself.

As it stands, however, the baseline model effectively captures the idea that the labor
market transition lags the energy sector transition. Workers wait until the transition is well
underway due to the possibility of wage cuts or job loss. High skill workers are attracted by
high wages and are first to transition. Low-skill workers, on the other hand, do not switch
until the likelihood of losing their jobs in dirty is sufficiently large. Both of these effects are

already observable in the energy industry.
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